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Summary

Centrosome asymmetry plays a key role in ensuring
the asymmetric division of Drosophila neural stem

cells (neuroblasts [NBs]) and male germline stem
cells (GSCs) [1–3]. In both cases, one centrosome is

anchored close to a specific cortical region during
interphase, thus defining the orientation of the spindle

during the ensuing mitosis. To test whether asymmet-
ric centrosome behavior is a general feature of stem

cells, we have studied female GSCs, which divide
asymmetrically, producing another GSC and a cysto-

blast. The cystoblast then divides and matures into
an oocyte, a process in which centrosomes exhibit

a series of complex behaviors proposed to play a cru-
cial role in oogenesis [4–6]. We show that the inter-

phase centrosome does not define spindle orientation

in female GSCs and that DSas-4 mutant GSCs [7], lack-
ing centrioles and centrosomes, invariably divide

asymmetrically to produce cystoblasts that proceed
normally through oogenesis—remarkably, oocyte

specification, microtubule organization, and mRNA lo-
calization are all unperturbed. Mature oocytes can be

fertilized, but embryos that cannot support centriole
replication arrest very early in development. Thus,

centrosomes are dispensable for oogenesis but es-
sential for early embryogenesis. These results reveal

that asymmetric centrosome behavior is not an essen-
tial feature of stem cell divisions.

Results and Discussion

The Majority of DSas-4 Mutant Ovarian Cysts
Lack Centrioles

The Drosophila ovary consists of 16–20 ovarioles,
chains of egg chambers proceeding through the 14
stage maturation process that begins in the germarium,
at the anterior tip of the ovariole [8] (Figure 1A). In region
1 of the germarium, two to three germline stem cells
(GSCs) are found in a niche composed of terminal-
filament, cap, and inner-sheath cells [9]. Female GSCs
divide asymmetrically to produce another GSC that re-
mains in the niche and a cystoblast that is displaced
away. This asymmetry requires that the spindle be cor-
rectly oriented with one spindle pole anchored at the
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spectrosome, a membranous structure found close to
the niche [10].

To investigate the role of centrosomes in female GSC
divisions, we have examined oogenesis in flies that lack
DSas-4, a protein required for centriole replication [7].
DSas-4 mutant flies, although morphologically normal,
are uncoordinated because of the lack of cilia in their
sensory neurons, and they die shortly after eclosion be-
cause they get stuck in their food. We therefore trans-
ferred mutant pupae to Petri dishes and manually fed
the flies with sugar solution for 1 to 4 days before dis-
secting the ovaries. Because of lack of dietary protein,
the mutant ovaries were invariably small, but at least
50% contained mature stage 14 eggs, indicating that
oogenesis could proceed normally. In addition, we re-
combined the DSas-4 mutation onto an FRT chromo-
some and used the FLP-FRT system to generate germ-
line clone mutant ovaries in otherwise wild-type (WT)
females [11]. We obtained similar results from both mu-
tant ovaries and germline clone mutant ovaries. Mutant
ovaries are used unless otherwise stated.

DSas-4 mutants start to lose centrioles during em-
bryogenesis, and no centrioles are detectable in third-
instar larval brain cells [7]. These cells, however, divide
extensively during larval stages, whereas female germ
cells are set aside early in development and do not di-
vide significantly until pupal stages [8]. To test whether
DSas-4 mutant germline cells retained any centrioles,
we stained WT and mutant ovaries with antibodies
against the centriolar protein D-PLP and the centroso-
mal proteins Cnn or Polo (Figure 1; data not shown).
WT germaria contained many hundreds of centrioles
and centrosomes (Figures 1B and 1C), whereas mutant
germaria contained, at most, only a few (Figures 1D
and 1E). We counted centriole numbers in mutant stem
cells and found that more than 80% (n = 114) contained
no detectable centrioles. Thus, although some centri-
oles can persist into adulthood in DSas-4 mutant ova-
ries, the vast majority of cysts contain no detectable
centrioles or centrosomes.

Centrosomes Do Not Segregate Asymmetrically
in Female GSC Division

The centriole pair at the core of each centrosome con-
sists of a younger daughter and an older mother. After
centrosome duplication, one centrosome will inherit
the original mother centriole and the other the original
daughter. During the asymmetric divisions of Drosophila
male GSCs [2] and larval neuroblasts (NBs) [1, 3] the two
centrosomes behave asymmetrically, and in male GSCs,
it has been shown that a centrosome’s behavior de-
pends on its mother-daughter identity. In both cases,
one centrosome (the mother in male GSCs) is anchored
close to a specific cortical region during interphase
(near the stem cell niche for GSCs, and close to apical
polarity cues for NBs), whereas the second is mobile. As
the cells enter mitosis, the second centrosome localizes
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to the side of the cell opposite the anchored centro-
some, ensuring correct spindle orientation with respect
to either the niche or the polarity axis. In male GSCs, the
mother centriole is thus always retained in the GSC [2],
and it has been proposed that differential centrosome
inheritance might be an essential feature of stem cell
divisions [12]. Moreover, in NBs that lack centrioles
and centrosomes [7], and in male GSCs that lack func-
tional centrosomes [13], asymmetric division is partially
perturbed.

We found that in WT female GSCs, the interphase cen-
trosome did not adopt a consistent position with respect
to either the niche-GSC interface or the spectrosome

Figure 1. Centrosomes Do Not Segregate Asymmetrically in Female

GSC Divisions

(A) Schematic diagram of a Drosophila germarium.

(B–E) WT (B and C) and DSas-4 mutant (D and E) germaria stained for

centrioles (D-PLP [red]) and the spectrosome/fusome (Shot [green]).

The nuclei of the GSCs are labeled with an asterisk. In the WT GSCs,

neither the single centrosomes (arrows in B) nor the replicated cen-

trosomes (C) adopt a consistent position relative to the spectrosome

(arrowheads in B–E) or the stem cell niche. The mutant germarium in

(D) has no centrosomes. The germarium in (E) has only a single cen-

trosome (arrow), which is not in a GSC. This demonstrates that the

mother centrosome is not selectively retained in female GSCs. Scale

bars represent 10 mm.
(arrows, Figure 1B). Even after centrosome duplication,
the two centrosomes appeared to be randomly posi-
tioned within the cell (Figure 1C). It was not until the
mitotic spindle had fully formed that we observed a
consistent orientation of the centrosomes relative to
the spectrosome and niche (see below). Although live
imaging would be required to fully describe centrosome
movements in female GSCs, it appears that the centro-
somes do not behave in the manner observed in male
GSCs and NBs.

Examining the distribution of the few remaining centri-
oles in DSas-4 mutant germaria allowed us to test
whether the mother centriole was always retained in
the GSC after division. If this were the case, then the fail-
ure of centriole replication in a GSC should result in the
production of a GSC with one mother centriole and an
acentriolar cystoblast; we would never expect to see
a mutant germarium in which all of the stem cells lacked
centrioles while the cystoblasts or cyst cells contained
them. An example of such a germarium is shown in Fig-
ure 1E, suggesting that the mother centriole cannot
always be retained in the female GSC.

Figure 2. Centrosomes Are Not Required for Spindle Orientation in

Female GSCs or Cysts

(A–C) WT (A) and DSas-4 mutant (B and C) female GSCs showing the

attachment of one spindle pole to the spectrosome (Shot [red]). Cen-

trosomes, revealed by Cnn (A and B) or Polo (C) staining (blue), are

absent in the mutant GSCs. MTs are shown in green. Anterior is to

the left.

(D–E) WT (D) and DSas-4 mutant (E) four-cell cysts. Despite the ab-

sence of centrosomes (revealed by Polo staining in blue) in the mu-

tant cyst, the four spindles (one of which is only partially visible in

this Z section) are clearly attached to the fusome.

Scale bars represent 10 mm.
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Figure 3. The Oocyte Is Correctly Specified and mRNAs Are Properly Localized in the Absence of Centrioles

(A) Schematic diagram of Orb localization (light orange) in a Drosophila ovariole.

(B and C) WT (B) and DSas-4 mutant (C) ovarioles showing the accumulation of Orb protein (green) in the oocyte of each cyst. D-PLP staining (red)

shows the presence of many centrioles in the WT ovariole, and these can be seen to accumulate in the oocyte (arrow). No centrioles are detect-

able in the mutant ovariole. Scale bars represent 50 mm.

(D–G) Stage 10A oocytes showing the localization of bicoid (bcd) mRNA to the anterior margin (D and E) and oskar (osk) mRNA to the posterior

pole (F and G). The localization of both mRNAs is indistinguishable in WT oocytes (D and F) and DSas-4 mutant germline clones (E and G). Scale

bars represent 25 mm.

(H and I) Stage 8 egg chambers showing the localization of Gurken protein (red) between the nucleus and the anterior-dorsal corner of the oocyte.

Gurken localizes identically in WT (H) and in a DSas-4 mutant germline clone (I) (marked by the absence of nuclear GFP in green). DNA is in blue.

Scale bars represent 20 mm.
Drosophila Female Germline Stem Cells Divide
Asymmetrically without Centrosomes

These results strongly suggested that asymmetric cen-
trosome inheritance does not occur in female GSC
division. To investigate whether centrosomes are never-
theless required for spindle orientation, we examined
mitotic stem cells with fully formed spindles (Figures
2A–2C). In WT stem cells, one spindle pole was always
associated with the spectrosome, and the spindle was
always positioned so that the cell would divide asym-
metrically with respect to the niche, i.e., one daughter
would remain in the niche and the other would be dis-
placed away (12/12 cells; Figure 2A). Similarly, in
DSas-4 mutant stem cells, one of the acentrosomal
spindle poles was always associated with the spectro-
some, and the spindle was always positioned such
that the cell would divide asymmetrically with respect
to the niche (13/13 cells; Figures 2B and 2C).

The displaced cystoblast undergoes four rounds of
division, producing a cyst of 16 interconnected cells. Dur-
ing these divisions, one pole of each spindle is anchored
to the fusome, a branched structure closely related to the
spectrosome [14], and this interaction has been pro-
posed to involve the astral microtubules (MTs) emanating
from the centrosome [4]. We confirmed that in WT mitotic
cysts, one pole of each spindle was always associated
with the fusome (n = 14 cysts, 49 mitotic cells; Figure 2D
and Figure S1 in the Supplemental Data available online)
and found that this was also true for the acentrosomal
spindle poles in DSas-4 mutant cysts (n = 27 cysts, 117
mitotic cells; Figure 2E and Figure S1). We conclude that
centrosomes are not required for the proper orientation of
the spindle relative to the spectrosome or niche in female
GSCs or for the proper orientation of the spindles relative
to the fusome in mitotic cysts.

The Oocyte Is Correctly Specified in the Absence

of Centrioles
One of the 16 cells differentiates into the oocyte,
whereas the others become nurse cells. Centrosome
asymmetry has been proposed as one means of select-
ing the oocyte because only one of the 16 cells inherits
the original mother centriole from the single-cell cysto-
blast [5]. The centrioles from the nurse cells then migrate
into the oocyte [15], moving to the posterior, where they
colocalize with the major microtubule-organizing center
(MTOC). The MTOC nucleates a MT network extending
into the nurse cells, and this is required for the localiza-
tion of oocyte specific proteins [16].

To investigate oocyte specification in the absence of
centrioles, we examined the localization of Orb in WT
and mutant oocytes; this protein normally accumulates
at the posterior of the oocyte, thus providing a readout
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of both oocyte specification and polarity [17] (Figure 3A).
The accumulation and localization of Orb was indistin-
guishable in WT and DSas-4 mutant oocytes (Figures
3B and 3C; n > 100 ovarioles). The same was also true
in WT and DSas-4 mutant ovarioles stained with Polo
antibodies (n > 200) because Polo also normally accu-
mulates in the early oocyte (data not shown). We con-
clude that the specification of the oocyte and the initial
establishment of oocyte polarity occur normally in the
absence of centrioles.

A Centrosome Is Not Required for Microtubule
Reorganization and mRNA Localization

during Midoogenesis
In Drosophila, the anterior-posterior (A-P) and dorsal-
ventral axes are defined by the localization of three
mRNAs to distinct positions within the oocyte: bicoid
(bcd) to the anterior cortex, oskar (osk) to the posterior
cortex, and gurken (grk) to a cap over the nucleus in
the anterior-dorsal corner. The proper localization of
these mRNAs depends on a dramatic reorganization of
the MT cytoskeleton during midoogenesis: The poste-
rior MTOC is disassembled, most of the centrioles dis-
appear, and the nucleus migrates to the anterior of the
oocyte [18]. Interestingly, a single centriole-containing
centrosome has recently been found to be closely asso-
ciated with the nucleus at these stages, and it has been
suggested that this centrosome-nucleus complex acts
as the major MTOC during midoogenesis [6]. Surpris-
ingly, we found that the MT cytoskeleton was indistin-
guishable in WT and mutant oocytes (Figure S2). MTs
were concentrated at the posterior of the nucleus in
18/18 stage 6 mutant oocytes. The nucleus migrated
normally to the anterior in 24/24 stage 7 mutant oocytes,
and the MT cytoskeleton had repolarized, exhibiting its
characteristic A-P gradient in 20/20 stage 9 mutant
oocytes. The localization of bcd (n = 14) and osk mRNAs
(n = 24) and Gurken protein (n = 24) was also indistin-
guishable in WT and mutant oocytes (Figures 3D–3I).
We conclude that centrioles and centrosomes are not
essential for MT reorganization or mRNA localization
during midoogenesis.

Centrioles Are Essential for Early

Embryonic Development
Because DSas-4 mutant flies cannot mate to produce
progeny [7], it has not previously been possible to exam-
ine whether centrioles are essential for the very rapid
mitotic divisions in the early syncytial embryo. We there-
fore used the FRT DSas-4 chromosome to generate ho-
mozygous germline clone embryos lacking the maternal
contribution of DSas-4.

An initial examination revealed that these embryos
never hatched as larvae (>500 embryos scored). To in-
vestigate when they failed in development, we fixed
timed collections and stained them for DNA, tubulin,
and the centrosomal marker Cnn (Figure 4). We found
that all the embryos arrested very early in development
with few nuclei (usually only one to eight). The chromatin
was almost always in a mitotic state and was usually
associated with anastral spindles (Figures 4B and 4C).
Surprisingly, however, we often observed two Cnn-
containing structures in these embryos, and these
were often associated with astral MTs, suggesting
that they were centrosomes (Figures 4C and 4D). Thus
it appears that the single sperm centriole is capable of
going through at least one round of replication in
embryos lacking DSas-4 protein. We observed a very
similar phenotype of early arrest with two centrosomes
in germline clone embryos lacking maternal DSas-6
(data not shown), another protein required for centriole
replication [19]. We therefore conclude that centrio-
les are essential for early embryonic development in
Drosophila.

It has been shown that flies homozygous for muta-
tions that disrupt centrosome function, such as cnn
[20, 21] and d-tacc [22], although viable, lay embryos
that accumulate mitotic errors and die. In these mutants,
however, the embryos only start to accumulate defects
later in embryogenesis, when the nuclear density in-
creases and the spindles start to collide. We speculate
that the very early arrest of DSas-4 mutant embryos
might be because centrosomes are required to catalyze
the efficient destruction of Cyclin B on the mitotic spin-
dle in early embryos [23]. The destruction of Cyclin B at
the end of mitosis is initiated at centrosomes in Dro-
sophila embryos [24], and, if centrosomes detach from
the spindle, Cyclin B is not properly destroyed and the
spindles arrest in mitosis [25]. This arrest appears to
be very similar to what we observe in DSas-4 mutant
embryos.

Figure 4. Centrioles Are Essential for Early Embryonic Development

(A and B) WT (A) and DSas-4 mutant (B) embryos from a 1–4 hr

collection stained for tubulin (red), centrosomes (Cnn [green]) and

DNA (blue). The WT embryo is w1 hr old and contains many well-

organized spindles. The mutant embryo, although at least 1 hr old,

is arrested early in development with only 6–7 disorganized anastral

spindles. Scale bars represent 100 mm.

(C) High magnification view of spindles in a DSas-4 mutant embryo.

All the spindles appear to be anastral, although one possesses

a Cnn dot at one pole. This embryo contained a second Cnn dot

not shown here. Scale bars represent 10 mm.

(D) A DSas-4 mutant embryo containing two closely associated Cnn

dots that each nucleate a large MT aster. Scale bars represent

10 mm.
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Conclusions

By studying the role of the centriole from stem cell to
embryo, we have shown it to be essential for embryo-
genesis but dispensable for asymmetric female GSC di-
vision and oogenesis. Thus, asymmetric centrosome
behavior is not an essential feature of stem cell division.
Instead, different types of stem cells can use different
mechanisms for ensuring the proper alignment of the
mitotic spindle during cell division. Given the evidence
that faulty spindle alignment can contribute to tumori-
genesis [26], there would be considerable evolutionary
pressure for stem cells to optimize their spindle orienta-
tion mechanism to their particular circumstances.

Experimental Procedures

Fly Stocks

Mutant alleles used were DSas-4S2214 [7] and DSas-6c02901 [19]. We

selected the mutants as nontubby pupae from a DSas-4S2214 /Tm6C

stock, transferred them to Petri dishes, and fed the flies with sugar

solution for 1 to 4 days before dissecting the ovaries. w67 flies

were used as controls.

Germline Clones

Germline clones were made with the FLP-FRT technique [11] after

the recombination of the mutations with FRT82B and were identified

by the absence of nlsGFP or with the FLP-DFS system [27]. Clones

were induced by heat shocking third-instar larvae at 37�C for 2 hr on

three consecutive days. Ovaries were dissected 14 days after eclo-

sion, and embryos were collected up to 36 days after heat shock.

Analysis of Ovaries and Embryos

Ovaries were fixed in 10% paraformaldehyde (PFA) for 8 min or, to

preserve spindles, dissected, fixed, and stained as described in

[28]. GSCs were identified by their position adjacent to the cap cells

and by the spherical spectrosome at the anterior of the cell. We per-

formed osk and bcd RNA in situ hybridization as described in [29].

Embryos from 0–3 hr or 1–4 hr collections were processed as de-

scribed previously [30]. Slides were analyzed with a Perkin Elmer

ERS Spinning Disc confocal system.

Antibodies

The following antibodies were used: rabbit anti-D-PLP (1:1000) [30];

mouse DM1a monoclonal anti-a-tubulin (1:1000) (Sigma); mouse

anti-Lamin A (1:250) [31]; rat anti-Gurken (1:1000) (T. Schupbach);

rabbit anti-Centrosomin (1:1000) (R.B., unpublished data); guinea-

pig anti-Shot spectrin repeat (1:1000) [32]; and rabbit anti-

phospho-PLK Ser137 (anti-Polo) (1:400) (Cell Signaling Technology).

Mouse anti-Orb 4H8 and 6H4 (1:200) each (developed by P. Schedl)

were obtained from the Developmental Studies Hybridoma Bank de-

veloped under the auspices of the National Institute of Child Health

and Human Development (NICHD) and maintained by The University

of Iowa, Department of Biological Sciences, Iowa City, IA. Alexa 488,

Cy3, and Cy5 secondaries were from Molecular Probes or Jackson

Laboratories.

Supplemental Data

Two figures are available at http://www.current-biology.com/cgi/

content/full/17/17/1498/DC1/.
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